Final Review

Shaoyun Yi

MATH 142

University of South Carolina

Apr 23, 2020

Chapter 8: Techniques of Integration–Integration Formulas

$$
\int k dx = kx + C
$$
\n
$$
\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \qquad \int \frac{1}{x} dx = \ln |x| + C
$$
\n
$$
\int e^x dx = e^x + C \qquad \int a^x dx = \frac{a^x}{\ln(a)} + C \quad (a > 0)
$$
\n
$$
\int \sin(x) dx = -\cos(x) + C \qquad \int \cos(x) dx = \sin(x) + C
$$
\n
$$
\int \sec^2(x) dx = \tan(x) + C \qquad \int \csc^2(x) dx = -\cot(x) + C
$$
\n
$$
\int \sec(x) \tan(x) dx = \sec(x) + C \qquad \int \csc(x) \cot(x) dx = -\csc(x) + C
$$
\n
$$
\int \sec(x) dx = \ln |\sec(x) + \tan(x)| + C \qquad \int \csc(x) dx = -\ln |\csc(x) + \cot(x)| + C
$$
\n
$$
\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C
$$
\n
$$
\int \tan(x) dx = \ln |\sec(x)| + C \qquad \int \cot(x) dx = \ln |\sin(x)| + C
$$

Simplify the integrand if possible

Firstly, try to simplify the integrand if possible.

Example

$$
\int \sqrt{x}(1+\sqrt{x}) dx = \int (\sqrt{x}+x) dx = \cdots
$$

Example

$$
\int \frac{\tan \theta}{\sec^2 \theta} \, d\theta = \int \frac{\sin \theta}{\cos \theta} \cos^2 \theta \, d\theta = \int \sin \theta \cos \theta \, d\theta = \cdots
$$

 $\mathcal{U} = \mathcal{g}(\mathsf{x})$ is in the integrand and its differential $\mathsf{d} \mathcal{U} = \mathcal{g}'(\mathsf{x})\, d\mathsf{x}$ also occurs.

Example

$$
\int x^2 e^{x^3} dx, \qquad U = x^3, \quad dU = 3x^2 dx
$$

Example

$$
\int \frac{\ln x}{x} dx, \qquad U = \ln x, \quad dU = \frac{1}{x} dx
$$

Integration by Parts: $\int U dV = UV - \int V dU$

r

 \overline{a}

Usually two different types of functions show up at the same time.

Example

$$
\int x \sin x \, dx, \qquad U = x, \quad dV = \sin x \, dx
$$

Example

$$
\int x^2 e^x dx, \qquad U = x^2, \quad dV = e^x dx \quad \text{(Twice I.B.P.)}
$$

Example

$$
\int x \ln x \, dx, \qquad U = \ln x, \quad dV = x \, dx
$$

Example

Z

$$
\int e^x \sin x \, dx, \qquad U = \sin x, \quad dV = e^x \, dx \quad \text{(Twice I.B.P.)}
$$

Trigonometric Integrals

(i) Basic Trig. Definitions/Integral formulas & Pythagorean Identities (ii) Half Angle and Double Angle Identities (or Formulas) \cdots Use a lot! (iii) $sin(x) cos(x)$ Integral Techniques & $sec(x) tan(x)$ Integral Techniques

Example

$$
\int \sin^2(x) \cos^2(x) dx = \int \frac{1-\cos(2x)}{2} \cdot \frac{1+\cos(2x)}{2} dx
$$

Example

$$
\int \sin^3 x \, dx = \int (1 - \cos^2 x) \sin x \, dx, \ u = \cos x, \ du = -\sin x \, dx
$$

Example

$$
\int \tan^2(x) \sec^2(x) \, dx, \quad u = \tan(x), \quad du = \sec^2(x) \, dx
$$

Z

Trigonometric Substitution

•
$$
\sqrt{a^2 - x^2}
$$
, $x = a \sin \theta$ and use Identity $1 - \sin^2 \theta = \cos^2 \theta$.

Example

$$
\int \frac{\sqrt{9-x^2}}{x^2} dx, \quad x = 3 \sin \theta, \quad dx = 3 \cos \theta \, d\theta
$$

—
2 √ $\overline{a^2+x^2}$, $x=a\tan\theta$ and use Identity $1+\tan^2\theta=\sec^2\theta$.

Example

$$
\int \frac{1}{x^2 \sqrt{x^2 + 4}} \, dx, \quad x = 2 \tan \theta, \quad dx = 2 \sec^2 \theta \, d\theta
$$

3 √ $\overline{x^2-a^2}, \quad x=a\sec\theta$ and use Identity $\sec^2\theta-1=\tan^2\theta.$

Example

$$
\int \frac{1}{\sqrt{x^2 - 4}} dx, \quad x = 2 \sec \theta, \quad dx = 2 \sec \theta \tan \theta \, d\theta
$$

Integration by Partial Fractions, I

Consider a rational function $\frac{P(x)}{Q(x)}$:

1 If deg($P(x)$) \ge deg($Q(x)$), do the long division calculation first:

Example

$$
\frac{x^2}{x-1} = x+1+\frac{1}{x-1}
$$

2 Factor the denominator $Q(x)$ as far as possible.

- Linear factors (eg. $(x r)^{m_L}$);
- Irreducible quadratic factors (eg. $(x^2 + px + q)^{m_Q}$, where $p^2 4q < 0$).

Example

$$
Q(x) = x4 - 1 = (x2 - 1)(x2 + 1) = (x - 1)(x + 1)(x2 + 1)
$$

Two cases:

$$
\sum_{i=1}^{m_L} \frac{A_i}{(x-r)^i}, \qquad \sum_{j=1}^{m_Q} \frac{B_j x + C_j}{(x^2 + px + q)^j}.
$$

Example

$$
\frac{1}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}
$$

Example

$$
\frac{1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}
$$

Example

$$
\frac{1}{(x+1)(x^2+1)^2} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}
$$

Improper Integrals (of Type I/II)

Example

$$
\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln x \Big|_{1}^{t} = \lim_{t \to \infty} (\ln t - 0) = \infty
$$

Example

$$
\int_0^1 \frac{1}{x} dx = \lim_{t \to 0^+} \int_t^1 \frac{1}{x} dx = \lim_{t \to 0^+} \ln x \Big|_t^1 = \lim_{t \to 0^+} (0 - \ln t) = \infty
$$

Example

$$
\int_0^{\infty} \frac{1}{x} dx = \int_0^1 \frac{1}{x} dx + \int_1^{\infty} \frac{1}{x} dx = \lim_{t \to 0^+} \int_t^1 \frac{1}{x} dx + \lim_{t \to \infty} \int_1^t \frac{1}{x} dx
$$

Remark.

Sometimes, L'Hôpital's Rule is helpful to evaluate the limits.

Chapter 10: Infinite Sequences and Series–Sequences

The main goal in this section is to study **Convergence of a sequence**.

- (i) Limit Rules for Sequences: $(+, -, \times, \div)$ and power rule)
- (ii) The Sandwich Theorem for Sequences
- (iii) The Continuous Function Theorem for Sequences (L'Hˆopital's Rule)
- (iv) The Monotonic Sequence Theorem
- (v) Commonly Occurring Limits

The sequence $\{S_n\}_{n=1}^\infty$ defined by

$$
S_n:=\sum_{k=1}^n a_k=a_1+a_2+\cdots+a_n
$$

is the **sequence of partial sums** of the series, the number S_n being the nth partial sum. The infinite series can be written as

$$
\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n.
$$

Main question: Test convergence/divergence of the series.

Infinite Series, II

Theorem (Geometric series)

$$
\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r} & \text{if } |r| < 1\\ \text{divergent} & \text{if } |r| \ge 1 \end{cases}
$$

(1)

Note that it's also calculable to find the sum of the **telescoping series.**

The Integral Test

Theorem (The Integral Test)

Let $\{a_n\}_{n=1}^\infty$ be a sequence of positive terms. Suppose that there is a positive integer N such that for all $n \geq N$, $a_n = f(n)$, where $f(x)$ is a positive, continuous, decreasing function of x. Then the series

$$
\sum_{n=N}^{\infty} a_n
$$
 and the integral $\int_{N}^{\infty} f(x) dx$ both converge or diverge.

Theorem (p-Series)

$$
\sum_{n=1}^{\infty} \frac{1}{n^p} = \begin{cases} \text{Convergent} & \text{if } p > 1 \\ \text{Divergent} & \text{if } p \le 1 \end{cases}
$$

Remark.

$$
p = 1: \text{ Harmonic series } \sum_{n=1}^{\infty} \frac{1}{n} \longleftrightarrow \int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \ln x \Big|_{1}^{b} = \infty \text{ diverges}
$$

(2)

Comparison Tests

Theorem (Direct Comparison Test for Series)

If $0 \le a_n \le b_n$ for all $n \ge N$, where N is a constant positive integer, then,

\n- \n
$$
f \sum_{n=1}^{\infty} b_n
$$
 converges, then so does $\sum_{n=1}^{\infty} a_n$.\n
\n- \n $f \sum_{n=1}^{\infty} a_n$ diverges, then so does $\sum_{n=1}^{\infty} b_n$.\n
\n

Theorem (Limit Comparison Test)

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \geq N$ (N an integer).

\n- \n
$$
If \lim_{n \to \infty} \frac{a_n}{b_n} = c > 0
$$
, then $\sum a_n$ and $\sum b_n$ both converge (or diverge).\n
\n- \n $If \lim_{n \to \infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.\n
\n- \n $If \lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.\n
\n

Theorem (The Ratio Test: Important tool for power series)

Let
$$
\sum a_n
$$
 be any series and suppose $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$,

- **1** If $L < 1$, then the series $\sum a_n$ is absolutely convergent.
- **2** If $L > 1$ (including $L = \infty$), then the series $\sum a_n$ is divergent.
- \bullet If $L = 1$, the Ratio Test is inconclusive.

Theorem (The Root Test)

- Let $\sum a_n$ be any series and suppose $\lim_{n\to\infty}\sqrt[n]{|a_n|}=L,$
	- **1** If $L < 1$, then the series $\sum a_n$ is absolutely convergent.
	- **2** If $L > 1$ (including $L = \infty$), then the series $\sum a_n$ is divergent.
	- \bullet If $L = 1$, the Root Test is inconclusive.

Absolute Convergence vs. Conditional Convergence

Definition

A series $\sum a_n$ converges absolutely (or is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.

Definition

We call a series **conditionally convergent** if $\sum a_n$ converges but $\sum |a_n|$ diverges. A classical example: Alternating Harmonic Series $\sum (-1)^n \frac{1}{n}$ $\frac{1}{n}$.

The Alternating Series Test

Theorem (The Alternating Series Test)

The series

$$
\sum_{n=1}^{\infty}(-1)^{n+1}b_n=b_1-b_2+b_3-b_4+\cdots, \qquad b_n>0,
$$

converges if the following two conditions are satisfied:

■ Nonincreasing: $b_n \geq b_{n+1}$ for all $n \geq N$, for some positive integer N,

$$
\bullet \lim_{n\to\infty}b_n=0.
$$

Example (The alternating *p*-series)

$$
\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p} = \begin{cases} \text{Absolutely Convergent} & \text{if } p > 1\\ \text{Condiitionally Convergent} & \text{if } 0 < p \le 1\\ \text{Divergent} & \text{if } p \le 0 \end{cases} \tag{3}
$$

Theorem (The Radius of Convergence of a Power Series)

The convergence of the series $\sum c_n(x - a)^n$ is one of the following 3 cases:

- **•** There is a positive number R such that the series diverges for x with $|x - a| > R$ but converges absolutely for x with $|x - a| < R$. The series may or may not converge at either of the endpoints $x = a \pm R$.
- **2** The series converges absolutely for every $x (R = \infty)$
- **3** The series converges only at $x = a$ and diverges elsewhere $(R = 0)$

 R is called the *radius of convergence* of the power series, and the interval of radius R centered at $x = a$ is called the **interval of convergence**.

The interval of convergence may be open, closed or half open, depending on the series (*endpoints*).

1 Use Ratio (or Root) Test to find the interval where the series converges absolutely. Ordinarily, this is an open interval

$$
|x-a| < R \quad \text{or} \quad a - R < x < a + R.
$$

- ² If the interval of absolute convergence is finite, test for convergence or divergence at each **endpoint** ($|x - a| = R$). Use a Comparison Test, the Integral Test, or the Alternating Series Test.
- **3** If the interval of absolute convergence is $a R < x < a + R$, the series **diverges** for $|x - a| > R$ (it does not even converge conditionally) because the n^{th} term does not approach zero for those values of x .
- (i) Addition/Subtraction of Power Series
- (ii) Product of Power Series
- (iii) Composition of a Power Series with a Continuous Function

Theorem (Substitution)

If
$$
\sum_{n=0}^{\infty} a_n x^n
$$
 converges absolutely for $|x| < R$, then

 \sum^{∞} $n=0$ $a_n(f(x))^n$

converges absolutely for any continuous function $f(x)$ with $|f(x)| < R$.

(iv) Term by Term Differentiation Theorem

 (v) Term by Term **Integration** Theorem

Taylor and Maclaurin Series

Definition (Let $f(x)$ be ∞ ly differentiable on an interval containing a)

The Taylor Series generated by $f(x)$ at $x = a$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \cdots
$$

The Maclaurin Series of f is the Taylor series generated by f at $x = 0$, or

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots
$$

Note.

The Maclaurin series generated by f is often just called the Taylor series of f .

Taylor polynomial of order n generated by f at $x = a$ is the polynomial

$$
P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n.
$$

Find Review

¹ Evaluating (or estimating) Non-elementary Integrals

- **2** Revisiting **Arctangents**
- ³ Evaluating **Indeterminate Forms**

⁴ Proving Euler's Identity

Common Taylor Series

1.
$$
\frac{1}{1-x}
$$
 1+x+x²+x³+... $\sum_{n=0}^{\infty} x^n$ |x|<1
\n2. $\frac{1}{1+x}$ 1-x+x²-x³+... $\sum_{n=0}^{\infty} (-1)^n x^n$ |x|<1
\n3. e^x 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+... $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ |x|<\infty
\n4. $sin(x)$ $x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+... $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}$ |x|<\infty
\n5. $cos(x)$ 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+... $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}$ |x|<\infty
\n6. $ln(1+x)$ $x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+... $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}x^n$ -1< x \leq 1
\n7. $tan^{-1}(x)$ $x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+... $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}x^{2n+1}$ |x|<1$$$

Chapter 11: §11.1–Parametrisations of Plane Curves

- (i) "Traveling Particle"
- (ii) Cartesian Equations vs. Parametric Equations and Converting
- (iii) Domains for the Parameter
- (iv) Parametric equations for lines
- (v) Parametric equations for circles
- (vi) Parametric equations for parabola/hyperbola
- (vii) Natural Parametrisations

§11.2–Calculus with Parametric Curves

(Parametric Formula for $\frac{dy}{dx}$) If all three derivatives exist and $\frac{dx}{dt} \neq 0$, then $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$> \begin{cases} Tangent line equation
Area enclosed by curv Area enclosed by curve

(Parametric Formula for $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$) Further we have $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2} = \frac{d}{dx}(y') = \frac{dy'/dt}{dx/dt}$ if y is a twice-differentiable function of x . Arc Length of Smooth Curves $\quad L = \int^b$ $\sqrt{[x'(t)]^2 + [y'(t)]^2} dt$

Revolution about the x-axis ($y\geq 0)$: $\mathcal{S}=\int^b$ a $2\pi y\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt$ Revolution about the y-axis ($x\geq 0)$: $\mathcal{S}=\int^b$ a $2\pi x\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt$

a

§11.3 & §11.5–Polar Coordinates

Stay safe!

Good Luck for all Finals!!